蔽性的海量数据面前,完全依靠人工是没办法解决内容审核难题,这给视频的内容管理带来了巨大的压力。因此,人工智能或许是视频内容管理的不二之选。
在大数据基础上,在视频文件或直播中,人工智能可以进行智能化视频分析。快速识别视频中人脸、声音、文字、物品、行为、场景等信息,为决策提供参考。具体来说,内容审核可化繁为简,将视频、直播内容转化为人工智能可以判断的内容比如图片和文字,通过图片识别、语音语义识别等人工智能技术对特殊物体如人体、刀具、枪支等做判断。
搜索了一系列文章,才发现,在网络视频内容审核这件事上,如今已有多家平台商推出了人工智能技术的应用服务,百度即是其中之一。说视频内容审核可能大家感觉会比较严肃,直白点,大概就是原来人工鉴别(暴恐血腥、不良信息)现今已进化到了机器鉴别的阶段。至于审核效率提升了多少,引用下网易杭州研究院执行院长汪源的话:“现在依靠深度学习的算法能够做到99.8%的准确率。”
这样看来,人工智能技术在网络视频内容审核方面的作用可谓是一场“轻量级”的智能视频分析应用,“轻量级”则是相对于专业级的安防监控视频的规模而言。同样是视频内容检测、分析和搜索,网络视频和监控视频完全是两个级别。无论是分析的视频数据量还是视频内容的类型都有极大的差异。
量不同
首先从视频数据的量来看,网站视频主要集中在各平台播出的影视剧、PGC/工作室内容、网友上传的原创视频(UGC)以及这两年来走红的网络直播视频上,这其中,数据量最大的要数网络直播视频,这类视频同属于网友原创视频的类型,也是各平台审查力度最大的一类视频资源。
据2015年艾媒的视频直播市场调研数据来看,仅2015年,全国在线直播平台数量就接近200家,大型直播平台每日高峰时段同时在线人数接近400万,同时直播的房间数量超过3000个,这样算下来每日高峰阶段即有600000在线视频直播的内容输出,这还只是两年前仅网站直播视频这一项的数据量,如今这个数据恐怕早已翻出几倍。
不过尽管如此,相较于城市视频监控的数据规模,网站视频的数据量仍然只是很小的一部分比例。安防视频监控实行的是7*24*365的全时段运作,以一个摄像头密度为6000的小型城市为例,6000高清摄像头一小时的视频大小将有10800000MB,一天算下来,一个城市将有247TB的视频数据,一个月7416TB,而这仅仅是一个超小型城市的视频数据量。
内容类型不同
网络视频大致可分为娱乐、生活、新闻、体育、在线教育、游戏、电竞等类别,无论是影视剧还是网络直播,审核的目标主要是查看视频内容是否涉及黄反、暴恐血腥、政治敏感、虚假广告等,审核的项目除了视频画面本身之外,还包括图片、文字、弹幕、网友留言、恶意刷榜、活动反作弊等项目。其中鉴别不良信息是网站视频内容审核的最大项目。